

P-VRS: The Permanent – Virtual Reference Station new concept

Joel Grau Bellet Head of Geodesy Unit

CatNet network current status

- GPS, GLO, GAL & BDS receivers
- Geodetic and individually calibrated antennas
- 4G and LAN connectivity
- Services
 - NTRIP
 - GeoFons
 - RINEX shop

VRS – Virtual Reference Station

- The servers at ICGC create a VRS for each user in its coordinates
 - The user needs to send the approximate coordinates
 - This limits de potential scalability of the solution*
- UNION proposes the new Permanent VRS (P-VRS) network concept
 - No scalability limitations
 - Includes Galileo HAS
 - Allows interterritorial navigation

^{*} Current status of the real time services at ICGC and scalability for the future

P-VRS – Permanent Virtual Reference Station

- Consists in the creation of a regular grid of VRS stations
 - With a grid spacing of 20 x 20 km should be enough to fulfil VRS like accuracy
 - These stations are called P-VRS (Permanent Virtual Reference Station)
- This P-VRS are published in the UNION NTRIP caster
 - Any user will have at least 3 stations closer than 20 km
 - TTFF (Time-To-First-Fix) should be similar to the one from the standard VRS concept
 - Users can (have to) "choose" and connect to the closest station
 - There is no need to send coordinates as:
 - All the P-VRS required stations are already available and accessible to all users
 - The users are capable of choosing the closest station according its position
 - The server does not need to create a new VRS for each user accessing the service

Proposed network of P-VRS stations

Worldwide naming: UNION $_{\alpha\alpha\beta\beta}$

- α and β take values from:
 - A,B,C,D...Z,1,2,3,4...9
 - 36 x 36 = 1296 nodes
- NTRIP naming
 - UNION Constant
 - AA Longitude (26 + 10)
 - BB Latitude (26 + 10)
- IGS std. RINEX naming
 - AA Longitude (26 + 10)
 - BB Latitude (26 + 10)

Permanent VRS System

- Designed to provide access to a network of "synthetical" stations
 - Nowadays, the CatNet network is the one providing corrections
 - The tool should work with any other similar network anywhere in the world
- Physical stations are also used in combination with P-VRS

Unidirectional connection

Permanent VRS System

Permanence of stations

 P-VRS are created in exactly the same way as if they were users working in the field

PVRS all over Catalonia (124)

VRS baselines details

Permanent VRS System

- P-VRS are created in exactly the same way as if they were users working in the field
- Real CatNet stations are also included in the UNION NTRIP caster, so acting as additional mountpoints

Data flow

- ICGC provides GPS, GLO, GAL, BDS data to the UNION caster:
 - UNION P-VRS are getting data from the 'VRS3M' service
 - CatNet stations are providing also MSM5 RTCM 3.2 in 1075(1),1085(1),1095(1),1125(1)

Site Name		Age [s]	Comm Activity	Data Rate	Da	GPS	GLO	GAL	BDS
	UNION_SCOU	0.23	receive data	1.000 sec	99.7	9	7	7	3
• Þ	UNION_SDOE	0.20	receive data	1.000 sec	99.9	9	7	7	3
• •	UNION_SD0F	0.28	receive data	1.000 sec	99.9	9	7	7	3
• •	UNION_SDOG	0.28	receive data	1.000 sec	99.8	9	7	7	3
• •	UNION_SD0H	0.28	receive data	1.000 sec	99.8	9	7	7	3
• •	UNION_SD0I	0.28	receive data	1.000 sec	99.8	9	7	7	3
• •	UNION_SD0J	0.28	receive data	1.000 sec	99.8	9	7	7	3
• •	UNION_SDOK	0.53	receive data	1.000 sec	99.8	9	6	7	3
• >	UNION_SDOL	0.53	receive data	1.000 sec	99.8	9	6	7	3
• •	UNION_SDOM	0.53	receive data	1.000 sec	99.9	9	6	7	3
• •	UNION_SDON	0.25	receive data	1.000 sec	99.9	9	5	7	3
• >	UNION_SDOO	0.31	receive data	1.000 sec	99.9	9	5	7	3
• >	UNION_SDOP	0.38	receive data	1.000 sec	99.8	9	7	7	3
• >	UNION_SDOQ	0.38	receive data	1.000 sec	99.7	9	7	7	3
• •	UNION_SDOR	0.38	receive data	1.000 sec	99.7	9	7	7	3
• •	UNION_SDOS	0.23	receive data	1.000 sec	99.7	9	7	7	3
• •	UNION_SDOT	0.23	receive data	1.000 sec	99.8	9	7	7	3
• >	UNION_SDOU	0.23	receive data	1.000 sec	99.8	9	7	7	3
• •	UNION_SEOH	0.28	receive data	1.000 sec	99.8	9	7	7	3
• •	UNION_SEO	0.28	receive data	1.000 sec	99.8	9	7	7	3
• •	UNION_SEOJ	0.28	receive data	1.000 sec	99.8	9	7	7	3
	UNION_SEOK	0.27	receive data	1.000 sec	99.9	9	6	6	3
• •	UNION_SEOL	0.14	receive data	1.000 sec	99.9	9	6	6	3
• •	UNION_SEOM	0.27	receive data	1.000 sec	99.8	9	6	6	3
• •	UNION_SEON	0.31	receive data	1.000 sec	99.9	9	7	7	3
	UNION_SEOO	0.31	receive data	1.000 sec	99.9	9	7	7	3
• •	UNION_SEOP	0.38	receive data	1.000 sec	99.8	9	7	7	3
	UNION_SEOQ	0.38	receive data	1.000 sec	99.8	9	7	7	3
	UNION_SEOR	0.38	receive data	1.000 sec	99.9	9	7	7	3
• •	UNION_SEOS	0.39	receive data	1.000 sec	99.9	9	7	7	3
	UNION_SEOT	0.31	receive data	1.000 sec	99.9	9	7	7	3
	UNION_SFOI	0.28	receive data	1.000 sec	99.8	9	7	7	3
	UNION_SF0J	0.28	receive data	1.000 sec	99.9	9	7	7	3

UNION server at ICGC

- The P-VRS software is solely based on Python
- It is running on an Ubuntu Linux (64-bit server)

CPU: 2 CPUs

Memory: 4 GB

Hard disk: 80 GB

It is performing 24x7 and monitored using PRTG:

Accuracy validation

Accuracy has been evaluated against the official ETRS89 RF

Conclusions

- From the user point of view:
 - It is essentially the same trusted VRS concept
 - It is capable of providing the same accuracy as current services
 - It allows the combination with PPP positioning whenever required
 - It allows using extra services as HAS and could be continuous worldwide
- From the provider point of view:
 - Allows scalability with the same resources that are currently used
 - It takes benefit from the wide extended NTRIP concept
 - It allows providing extra services
 - It allows covering the whole territory, either with VRS or with PPP

Mass-market is feasible

This project has received funding from the European Union Agency for the Space Programme under grant agreement No GSA/GRANT/06/2019-UNION

Institut Cartogràfic i Geològic de Catalunya

Parc de Montjuïc, E-08038 Barcelona 41°22'12" N, 2°09'20" E (ETRS89)

- www.icgc.cat
- □ icgc@icgc.cat
- twitter.com/ICGCat
- facebook.com/ICGCat

Tel. (+34) 93 567 15 00 Fax (+34) 93 567 15 67

